Syllabus
(a) Thermodynamics: Laws of thermodynamics, reversible and irreversible processes, entropy; Isothermal, adiabatic, isobaric, isochoric processes and entropy changes; Otto and Diesel engines, Gibbs’ phase rule and chemical potential; van der Waals equation of state of a real gas, critical constants; Maxwell-Boltzmann distribution of molecular velocities, transport phenomena, equipartition and virial theorems; Dulong-Petit, Einstein, and Debye’s theories of specific heat of solids; Maxwell relations and applications; Clausius- Clapeyron equation; Adiabatic demagnetisation, Joule-Kelvin effect and liquefaction of gases.(b) Statistical Physics: Macro and micro states, statistical distributions, Maxwell-Boltzmann, Bose- Einstein and Fermi-Dirac distributions, applications to specific heat of gases and blackbody radiation; Concept of negative temperatures
Course Curriculum
Course Reviews
No Reviews found for this course.